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Long echo time (TE =270 ms) in vivo proton NMR spectra
resembling human brain metabolite patterns were simulated for
lineshape fitting (LF) and quantitative artificial neural network
(ANN) analyses. A set of experimental in vivo 'H NMR spectra
were first analyzed by the LF method to match the signal-to-noise
ratios and linewidths of simulated spectra to those in the experi-
mental data. The performance of constructed ANNs was compared
for the peak area determinations of choline-containing compounds
(Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals
using both manually phase-corrected and magnitude spectra as in-
puts. The peak area data from ANN and LF analyses for simulated
spectra yielded high correlation coefficients demonstrating that the
peak areas quantified with ANN gave similar results as LF analysis.
Thus, a fully automated ANN method based on magnitude spectra
has demonstrated potential for quantification of in vivo metabolites
from long echo time spectroscopic imaging. © 2002 Elsevier Science

Key Words: artificial neural network; 'H nuclear magnetic res-
onance spectroscopy; brain metabolites; quantification; simulated
spectra.

INTRODUCTION

facilitate the use of spectroscopic data in clinical decision mak
ing (6-9.

NMR spectroscopy data are commonly quantified both in
time and frequency domains. For clinical applications, it is a
convention to use the frequency domain display. Spectroscop
data analysis is currently laborious due to the need of supel
vision requiring steps such as phase correction. Manual pha:
correction is time-consuming and also difficult to accomplish
in low signal-to-noise ratio spectra often encountereid wivo
NMR spectroscopy. Phase correction is a necessary step pri
to peak area determination, since lineshape fitting (LF) and arti
ficial neural networks (ANN) analysis of phase corrected NMR
spectra has been shown to result in a compromised accuracy
guantification of biological data sets (e.g)., With regard to the
clinical applicability, the use of various fitting methods requires
spectroscopic expertise, thus making fully automated analysi
by LF methods cumbersome and impractical.

We have previously shown that baihvitro (9) andin vivo
(10) NMR spectroscopy data can be quantified by ANN. In the
present work, we have extended the automation procedure t
studying the use of magnitude spectra as inputs for ANN quan
tification to overcome the phase correction problem. Itis demon

More than 15 low-molecular weight cerebral metabolites hawg ateq that the new method estimates concentrations of hum:

been assigned and quantifiedvivo by proton magnetic reso-
nance spectroscopyH NMR) (1) proving its unique value as
a noninvasive tool for neurochemistrg, (3). The majority of
this neurochemical information is obtainable by means of the
short echo time (TEfH NMR. However, the simplified long

TE (>100 ms) brain proton spectra have been demonstratﬁ(]jv
to possess a wealth of potentially useful information for clin- o
ical neuroscience4( 5). If clinical 'H NMR spectroscopy is 'H MRSI data consisting of 90 spectroscopic data sets fron
expected to evolve to a more widely applicable method for me88 glioma patients (oligoastrocytoma, anaplastic astrocytome
ical diagnosis, reproducible data-analysis should occur closeolgodendroglioma, or glioblastoma multiforme) were included
real-time. This is not trivial, since a trend from single-volumé the study!H MRSI measurements were performedina1.5T
H NMR to multi-volume magnetic resonance spectroscopMR scanner (Magnetom Vision, Siemens, Erlangen, Germany
imaging ¢H MRSI), producing several hundred spectra frorasing a standard CP head coil. For MRSI localization, 2D
each study, is underway. Automated quantificatiotFbMRSI FLASH images in 3 orientations were acquired. A double spin
without a need for excessive spectroscopic expertise wowdho sequence with 18 16 phase encoding steps was used

1

brain metabolites from long THH MR SI with a similar accuracy
as LF analysis of manually phase-corrected spectra.

EXPERIMENTAL

1H NMR Spectroscopy Measurements
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with TR = 2600 ms and TE= 270 ms with 2 acquisitions. TABLE 1

Volume preselection of §400x 80/100x 15 mn? and voxel Parameter Variations of the Data Sets
size 1.5 cm, was performed including the tumor area. Spectral
data was collected either from one or two 15 mm thick slices
covering the tumor volume as judged from localizer MR imEXPerimentalset  4.4-18 = 4S1~i1 16-336 14-220 12-38.3
ages. From this MRS data 451 spectra, with a large variation]ff o °* A Ty vaaee el
concentrations for individual metabolites, were chosen for th@ependent test set 4.4-18 50841 1.6-37.4 1.3-251 2.4-53.8

subsequent quantitative metabolite analysis.

Data set a@ n®  P. S/Ncho S/Nor  S/Nnaa

2 a is the half linewidth (in Hz).

b

. . n is the number of spectra.

Simulation of the Spectra ¢ P, is the displacement of location of the peaks (in Hz).

A total of 2000 Iong echo-timén vivo NMR spectra were noisZN is the signal-to-noise ratio (intensity of signal/standard deviation of

simulated using Lorentzian lineshapes and varying frequencies,
intensities, as well as half linewidths of the three detectable
metabolites (Cho, Cr, and NAA). The complex spectrum can be

written in the form of The peak areas for the resonances, i.e., the actual outpiits (A

were calculated using
F(v) = Re@) +i Im(v) = |F(v)| €%, [1]

v

Ai— Za,'h. [6]

where

|F (v)| = [RE(v) + Im?(v)] "/ 2 Data Processing and Lineshape Fitting Analysis
In order to remove the residual water signal from the exper
imental human braiAH spectra, the Hankel Lanczos singular
value decomposition (HLSVD)1{, 12 method was applied.
Both real and imaginary parts were used for conversion of spec
troscopic data into the magnitude mode. The real parts of the e;
) , ) .. perimental and simulated spectra were analyzed in the frequen
[F(v)] |s.the _amphtude spectral density (called the magn_ltu main by means of an automated analysis program (MRSToo
spectra in this paper) ang{v) the phase angle. The folllowm.g Ltd., Kuopio, Finland) under a Matlab-software platform (Math-
equations were used to calculate the real (Re) and IMagingf¥rks, Natick, MA). The mathematical lineshape model for the

part (Im) of the simulated spectra three detectable brain metabolites were

and

¢(v) = tan [Im(v)/Re@)]. (3]

3 3 2|I 3 2 i
Re@) = ;ABS (v) = 21: m [4] L(v) = Z af—i—ji(—vlv)z cosg;)

i= i= ! i=1 — U

> >\ 2ali(v — i) + SELIGDE sin@i) + co+ v, [7]
Im(v) = ;DISP, (v) = ; 21 a0y (5] —~ a? +4(v — v)? L

in which ¢y + cyv takes into account the background variation.
The linewidths were constrained to be equal, because this a
proach has been shown to be more accurate especially for spec
a\%i_th very low signal-to-noise ratialQ).

in whichg; is the half linewidth; is the signal intensity, and

is the resonance frequen@BS(v) stands for absorption and
DISR (v) stands for dispersion part of the LorentziarHow-
ever, the real and imaginary parts both commonly contain
sorpuon an.d dispersion cc_)mponents, even after the phasg %\%N Analysis
rection. Noise from experimental spectra was added to mimic

the genuinén vivospectra. The half linewidths in each spectrum The simulated spectra were used in neural network trainini
were the same for signals at the resonance frequencies of GQbaalculate the spectral points (input) from absolute metabolit:
Cr, and NAA. Variations of parameters used in calculations peak areas (output) corresponding to metabolites Cho, Cr, ar
simulated spectra are shown in Table 1. The values are talké®A. The simulated spectra were divided into three subsets
from the LF analyses of experimental spectra. The simulat&te first subset (1000 of the spectra) was the training set, whic
spectra agree with the experimental spectra except that the eas used for computing the gradient and updating the networ
rect peak areas are known. Equations [4] and [2] were usedateights and biases. The second subset (500 of the spectra) w
form the phase and magnitude spectra data sets for the ANN® test set. The error of the test set was monitored during th
respectively. training process. When the error of the test set began to increa
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for a specified number of iterations, the training was terminate
and the weights and biases at the minimum of test error were |
turned. The third subset (500 of the spectra) was the independ
test set. The error of this independent test set was not used ¢2
ing the training, but rather to test the model. The experiment;?
spectra have been used only as an independent test set. g

Afeed-forward, fully connected neural network was used aj.g
plying the back propagation algorithm in the training. The 13“-
data points formed the input layer of the network. In the h|d%
den layer, 20 neurons were used and the output layer Con5|s<.,
of 3 neurons. Logistic transfer functions were used. This nes
work topology was evaluated using atrial-and-error process. T
training process was accomplished using a 1000 MHz Penti.
PC applying acommercial NeuroShell 2 program (NeuroShell
Release 4.0, Ward System Group Inc., 1998).

RESULTS AND DISCUSSION

The experimentain vivo 'H NMR spectra i = 451) were
analyzed by the LF method so that the spectral qualities as ¢
picted by signal-to-noise ratio and linewidths matched those
the simulated spectra. The 500 simulated spectra of the ince
pendent test set were also quantified by the LF method ShOWI
correlation coefficients with the actual output values of 0.93(2
0.905, and 0.968 for Cho, Cr, and NAA, respectively (Table
and Fig. 1).

The training processes with the simulated spectral data a
actual values led to complete learning of the neural networki
The correlation coefficients between the ANN and actual outp S
values for the independent test set were almost identical wi
those obtained by LF methods (Table 2). Using the magnitut
spectra as inputs, the correlation coefficients between the AN
and the actual output values were also high (Table 2 and Fig. .

For evaluating the usefulness of the method in cases of nc
ideal data, the 451 experimental magnitude spectra were al
lyzed using the ANN method. The correlation coefficients be
tween ANN and LF results were 0.881, 0.823, and 0.925 f
Cho, Cr, and NAA, respectively. Although these results sho
less correlation than the simulated results (Table 2), they sex,,
to confirm that the ANN method is not very sensitive to base2.
line and lineshape distortions. They are also consistent with o2

Q.

TABLE 2
The Summary of Results of the Metabolite Peak Areas for the
Simulated Spectra of the Independent Test Set Using Lineshape
Fitting (LF) and Artificial Neural Network (ANN) Analysis

Lineshape Fitting A

Cho
ra/rmg

0.938315

Cr
ra/rmg

NAA
ra/rmg

Method Spectra

LF
ANN

phase spectra 0.90%1187 0.9681372
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ar is the correlation coefficient.
b rms is the root mean square error.
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FIG.1. Correlation betweenthe actual and peak areas obtained by lineshay
fitting for (a) choline-containing compounds, (b) total creatine, and (c) N-acetyl
aspartate in the simulated data set. The diagonal lines indicate the identity line
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previous studyX0) that the simulated spectra can be used in the
training of ANNs, which is applicable for quantification in cases
when sufficiently large experimental data sets are not availabls

The lineshape fitting method in the frequency domain is com
monly used to quantify NMR spectra,(13-15. In the sophis-
ticated LF-methods, linear combinations of model spectra o
metabolite solutions are exploited for fitting the short TE brain
spectra {, 13. This procedure greatly improves quantification
of partially overlapping signals. Recently, techniques based o
time-domain fitting were proposed for the use of biomedical
NMR spectroscopyl6, 17. The time domain technique pro-
posed by Vanhamnet al. (16) is aimed at overcoming the prob-
lems posed by low signal-to-noise ratioiimvivo spectra by in-
corporating a model function fitting. An interesting time domain
analysis algorithm based on minimum rank normalization wa:s
proposed for spectral quantification for samples with few visi-
ble signals 17). However, this method normally uses the rank of
the Hankel matrix constructed from the difference of two time
domain signals, and thus it has limited applicability in clinical
settings. The present results show that quantification of long TI
in vivomagnitude brain spectra with an automated ANN methoc
is feasible. The correspondence between the actual and LF ve
ues of the simulated spectra is good, although not perfect eve
though the peaks have ideal Lorentzian lineshapes and corre
phases. This suggests that in cases of low signal-to-noise rati
which may occur in clinical NMR spectroscopy, accurate quan
tification may turn out to be difficult. Practically, the peaks in the
experimental spectra show nonideal lineshapes, and the real a
imaginary parts contain both common absorption and dispel
sion components making the fitting procedure too inaccurate. |
should be noted that the variation of metabolite concentration
in human brain tumors is relatively largé4). Therefore, we
believe that the errors imposed by the data analysis method pr
posed here does not prevent the us&HNMR data in aiding
the decision process.

In the case of the magnitude spectra, phase correction is n
needed since these spectra do not have a phase. This is expec
to affect lineshapes and also intensity ratios of the spectra. Hov
ever, ANN can easily be trained for alterations of these variables
and therefore, results comparable to those using the exact
phase-corrected spectra can be obtained. This makes it pos
ble to avoid a difficult and time-consuming preprocessing ste|
in the quantification and classification of brain tumor spectra.

CONCLUSIONS

The ANN quantification results from human braid MRSI
agree well with those obtained from a LF analysis demonstratin
that magnitude spectra as inputs can be used to overcome t
ctical problem of fast and reliable phase correction. Our stud

ra
FIG. 2. Correlation between the actual and peak areas obtained by AI\B\I ts that it is f ible t truct a full t ted |
(using magnitude spectra) for (a) choline-containing compounds, (b) total cﬁeugges S thal It Is 1easible to construct a Tully automated rea

atine, and (c) N-acetyl aspartate in the simulated data set. The diagonal Iii8€ quantifying analyzer for long TH vivo 'H NMR spectra
indicate the identity line. using ANN with magnitude spectra.
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