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Long echo time (TE = 270 ms) in vivo proton NMR spectra
resembling human brain metabolite patterns were simulated for
lineshape fitting (LF) and quantitative artificial neural network
(ANN) analyses. A set of experimental in vivo 1H NMR spectra
were first analyzed by the LF method to match the signal-to-noise
ratios and linewidths of simulated spectra to those in the experi-
mental data. The performance of constructed ANNs was compared
for the peak area determinations of choline-containing compounds
(Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals
using both manually phase-corrected and magnitude spectra as in-
puts. The peak area data from ANN and LF analyses for simulated
spectra yielded high correlation coefficients demonstrating that the
peak areas quantified with ANN gave similar results as LF analysis.
Thus, a fully automated ANN method based on magnitude spectra
has demonstrated potential for quantification of in vivo metabolites
from long echo time spectroscopic imaging. C© 2002 Elsevier Science

Key Words: artificial neural network; 1H nuclear magnetic res-
onance spectroscopy; brain metabolites; quantification; simulated
spectra.
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INTRODUCTION

More than 15 low-molecular weight cerebral metabolites h
been assigned and quantifiedin vivo by proton magnetic reso
nance spectroscopy (1H NMR) (1) proving its unique value a
a noninvasive tool for neurochemistry (2, 3). The majority of
this neurochemical information is obtainable by means of
short echo time (TE)1H NMR. However, the simplified long
TE (>100 ms) brain proton spectra have been demonstr
to possess a wealth of potentially useful information for cl
ical neuroscience (4, 5). If clinical 1H NMR spectroscopy is
expected to evolve to a more widely applicable method for m
ical diagnosis, reproducible data-analysis should occur clos
real-time. This is not trivial, since a trend from single-volum
1H NMR to multi-volume magnetic resonance spectrosco
imaging (1H MRSI), producing several hundred spectra fro
each study, is underway. Automated quantification for1H MRSI
without a need for excessive spectroscopic expertise w
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facilitate the use of spectroscopic data in clinical decision m
ing (6–8).

NMR spectroscopy data are commonly quantified both
time and frequency domains. For clinical applications, it is
convention to use the frequency domain display. Spectrosc
data analysis is currently laborious due to the need of su
vision requiring steps such as phase correction. Manual p
correction is time-consuming and also difficult to accompl
in low signal-to-noise ratio spectra often encountered inin vivo
NMR spectroscopy. Phase correction is a necessary step
to peak area determination, since lineshape fitting (LF) and
ficial neural networks (ANN) analysis of phase corrected NM
spectra has been shown to result in a compromised accura
quantification of biological data sets (e.g.,9). With regard to the
clinical applicability, the use of various fitting methods requir
spectroscopic expertise, thus making fully automated anal
by LF methods cumbersome and impractical.

We have previously shown that bothin vitro (9) and in vivo
(10) NMR spectroscopy data can be quantified by ANN. In t
present work, we have extended the automation procedur
studying the use of magnitude spectra as inputs for ANN qu
tification to overcome the phase correction problem. It is dem
strated that the new method estimates concentrations of hu
brain metabolites from long TE1H MRSI with a similar accuracy
as LF analysis of manually phase-corrected spectra.

EXPERIMENTAL

In Vivo 1H NMR Spectroscopy Measurements

1H MRSI data consisting of 90 spectroscopic data sets fr
38 glioma patients (oligoastrocytoma, anaplastic astrocyto
oligodendroglioma, or glioblastoma multiforme) were includ
in the study.1H MRSI measurements were performed in a 1.5
MR scanner (Magnetom Vision, Siemens, Erlangen, Germa
using a standard CP head coil. For MRSI localization,
FLASH images in 3 orientations were acquired. A double s
echo sequence with 16× 16 phase encoding steps was us
1090-7807/02 $35.00
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with TR = 2600 ms and TE= 270 ms with 2 acquisitions
Volume preselection of 80/100× 80/100× 15 mm3 and voxel
size 1.5 cm3, was performed including the tumor area. Spect
data was collected either from one or two 15 mm thick slic
covering the tumor volume as judged from localizer MR im
ages. From this MRSI data 451 spectra, with a large variatio
concentrations for individual metabolites, were chosen for
subsequent quantitative metabolite analysis.

Simulation of the Spectra

A total of 2000 long echo-timein vivo NMR spectra were
simulated using Lorentzian lineshapes and varying frequenc
intensities, as well as half linewidths of the three detecta
metabolites (Cho, Cr, and NAA). The complex spectrum can
written in the form of

F(v) = Re(v)+ i Im(v) = |F(v)| eiφ(v), [1]

where

|F(v)| = [Re2(v)+ Im2(v)]1/2 [2]

and

φ(v) = tan−1[Im(v)/Re(v)]. [3]

|F(v)| is the amplitude spectral density (called the magnitu
spectra in this paper) andφ(v) the phase angle. The followin
equations were used to calculate the real (Re) and imagi
part (Im) of the simulated spectra

Re(v) =
3∑

i=1

ABSi (v) =
3∑

i=1

a2
i I i

a2
i + 4(v − vi )2

, [4]

Im(v) =
3∑

i=1

DISPi (v) =
3∑

i=1

2ai Ii (v − vi )

a2
i + 4(v − vi )2

, [5]

in whichai is the half linewidth,Ii is the signal intensity, andvi

is the resonance frequency.ABSi (v) stands for absorption an
DISPi (v) stands for dispersion part of the Lorentziani . How-
ever, the real and imaginary parts both commonly contain
sorption and dispersion components, even after the phase
rection. Noise from experimental spectra was added to mi
the genuinein vivospectra. The half linewidths in each spectru
were the same for signals at the resonance frequencies of
Cr, and NAA. Variations of parameters used in calculations
simulated spectra are shown in Table 1. The values are ta
from the LF analyses of experimental spectra. The simula
spectra agree with the experimental spectra except that the

rect peak areas are known. Equations [4] and [2] were used
form the phase and magnitude spectra data sets for the AN
respectively.
ET AL.
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TABLE 1
Parameter Variations of the Data Sets

Data set aa nb PL S/NCho S/NCr S/NNAA

Experimental set 4.4–18 451≈±1 1.6–33.6 1.4–22.0 1.2–38.3
Training set 4.4–18 1000≈±1 1.4–50.5 0.9–38.9 0.6–81.0
Test set 4.4–18 500≈±1 1.4–50.5 0.9–38.9 0.6–81.0
Independent test set 4.4–18 500≈±1 1.6–37.4 1.3–25.1 2.4–53.8

a a is the half linewidth (in Hz).
b n is the number of spectra.
c PL is the displacement of location of the peaks (in Hz).
d S/N is the signal-to-noise ratio (intensity of signal/standard deviation

noise).

The peak areas for the resonances, i.e., the actual outputsi ),
were calculated using

Ai = π

2
ai Ii . [6]

Data Processing and Lineshape Fitting Analysis

In order to remove the residual water signal from the exp
imental human brain1H spectra, the Hankel Lanczos singul
value decomposition (HLSVD) (11, 12) method was applied.
Both real and imaginary parts were used for conversion of sp
troscopic data into the magnitude mode. The real parts of the
perimental and simulated spectra were analyzed in the freque
domain by means of an automated analysis program (MRST
Ltd., Kuopio, Finland) under a Matlab-software platform (Mat
works, Natick, MA). The mathematical lineshape model for t
three detectable brain metabolites were

L(v) =
3∑

i=1

a2
i I i

a2
i + 4(v − vi )2

cos(φi )

+
3∑

i=1

2ai Ii (v − vi )

a2
i + 4(v − vi )2

sin(φi )+ c0+ c1v, [7]

in which c0 + c1v takes into account the background variatio
The linewidths were constrained to be equal, because this
proach has been shown to be more accurate especially for sp
with very low signal-to-noise ratio (10).

ANN Analysis

The simulated spectra were used in neural network train
to calculate the spectral points (input) from absolute metabo
peak areas (output) corresponding to metabolites Cho, Cr,
NAA. The simulated spectra were divided into three subse
The first subset (1000 of the spectra) was the training set, wh
was used for computing the gradient and updating the netw

to

Ns,
weights and biases. The second subset (500 of the spectra) was
the test set. The error of the test set was monitored during the
training process. When the error of the test set began to increase
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for a specified number of iterations, the training was terminat
and the weights and biases at the minimum of test error were
turned. The third subset (500 of the spectra) was the independ
test set. The error of this independent test set was not used
ing the training, but rather to test the model. The experimen
spectra have been used only as an independent test set.

A feed-forward, fully connected neural network was used a
plying the back propagation algorithm in the training. The 13
data points formed the input layer of the network. In the hi
den layer, 20 neurons were used and the output layer consi
of 3 neurons. Logistic transfer functions were used. This n
work topology was evaluated using a trial-and-error process. T
training process was accomplished using a 1000 MHz Penti
PC applying a commercial NeuroShell 2 program (NeuroShel
Release 4.0, Ward System Group Inc., 1998).

RESULTS AND DISCUSSION

The experimentalin vivo 1H NMR spectra (n = 451) were
analyzed by the LF method so that the spectral qualities as
picted by signal-to-noise ratio and linewidths matched those
the simulated spectra. The 500 simulated spectra of the in
pendent test set were also quantified by the LF method show
correlation coefficients with the actual output values of 0.93
0.905, and 0.968 for Cho, Cr, and NAA, respectively (Table
and Fig. 1).

The training processes with the simulated spectral data a
actual values led to complete learning of the neural networ
The correlation coefficients between the ANN and actual outp
values for the independent test set were almost identical w
those obtained by LF methods (Table 2). Using the magnitu
spectra as inputs, the correlation coefficients between the A
and the actual output values were also high (Table 2 and Fig.

For evaluating the usefulness of the method in cases of n
ideal data, the 451 experimental magnitude spectra were a
lyzed using the ANN method. The correlation coefficients b
tween ANN and LF results were 0.881, 0.823, and 0.925 f
Cho, Cr, and NAA, respectively. Although these results sho
less correlation than the simulated results (Table 2), they se
to confirm that the ANN method is not very sensitive to bas
line and lineshape distortions. They are also consistent with

TABLE 2
The Summary of Results of the Metabolite Peak Areas for the

Simulated Spectra of the Independent Test Set Using Lineshape
Fitting (LF) and Artificial Neural Network (ANN) Analysis

Cho Cr NAA

Method Spectra r a/rmsb r a/rmsb r a/rmsb

LF phase spectra 0.936/1315 0.905/1187 0.968/1372
ANN phase spectra 0.959/1060 0.942/880 0.980/1093
ANN Magnitude spectra 0.934/1288 0.924/984 0.969/1373
a r is the correlation coefficient.
b rms is the root mean square error.
N BRAIN METABOLITES 3
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FIG. 1. Correlation between the actual and peak areas obtained by lineshape
fitting for (a) choline-containing compounds, (b) total creatine, and (c) N-acetyl
aspartate in the simulated data set. The diagonal lines indicate the identity line.
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FIG. 2. Correlation between the actual and peak areas obtained by A
(using magnitude spectra) for (a) choline-containing compounds, (b) total

atine, and (c) N-acetyl aspartate in the simulated data set. The diagonal
indicate the identity line.
ET AL.
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previous study (10) that the simulated spectra can be used in
training of ANNs, which is applicable for quantification in cas
when sufficiently large experimental data sets are not availa

The lineshape fitting method in the frequency domain is co
monly used to quantify NMR spectra (1, 13–15). In the sophis-
ticated LF-methods, linear combinations of model spectra
metabolite solutions are exploited for fitting the short TE bra
spectra (1, 13). This procedure greatly improves quantificatio
of partially overlapping signals. Recently, techniques based
time-domain fitting were proposed for the use of biomedic
NMR spectroscopy (16, 17). The time domain technique pro
posed by Vanhammeet al. (16) is aimed at overcoming the prob
lems posed by low signal-to-noise ratio inin vivospectra by in-
corporating a model function fitting. An interesting time doma
analysis algorithm based on minimum rank normalization w
proposed for spectral quantification for samples with few vi
ble signals (17). However, this method normally uses the rank
the Hankel matrix constructed from the difference of two tim
domain signals, and thus it has limited applicability in clinic
settings. The present results show that quantification of long
in vivomagnitude brain spectra with an automated ANN meth
is feasible. The correspondence between the actual and LF
ues of the simulated spectra is good, although not perfect e
though the peaks have ideal Lorentzian lineshapes and co
phases. This suggests that in cases of low signal-to-noise r
which may occur in clinical NMR spectroscopy, accurate qua
tification may turn out to be difficult. Practically, the peaks in th
experimental spectra show nonideal lineshapes, and the rea
imaginary parts contain both common absorption and disp
sion components making the fitting procedure too inaccurat
should be noted that the variation of metabolite concentrati
in human brain tumors is relatively large (14). Therefore, we
believe that the errors imposed by the data analysis method
posed here does not prevent the use of1H NMR data in aiding
the decision process.

In the case of the magnitude spectra, phase correction is
needed since these spectra do not have a phase. This is exp
to affect lineshapes and also intensity ratios of the spectra. H
ever, ANN can easily be trained for alterations of these variab
and therefore, results comparable to those using the exa
phase-corrected spectra can be obtained. This makes it p
ble to avoid a difficult and time-consuming preprocessing s
in the quantification and classification of brain tumor spectra

CONCLUSIONS

The ANN quantification results from human brain1H MRSI
agree well with those obtained from a LF analysis demonstra
that magnitude spectra as inputs can be used to overcom
practical problem of fast and reliable phase correction. Our st
suggests that it is feasible to construct a fully automated re
linestime quantifying analyzer for long TEin vivo 1H NMR spectra
using ANN with magnitude spectra.
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